Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.870
Filtrar
1.
Wei Sheng Yan Jiu ; 53(2): 202-208, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604954

RESUMO

OBJECTIVE: To investigate the blood cadmium concentrations and the related change in Chinese urban children derived from the China Nutrition and Health Survey 2002 and 2012(CNHS 2002 and CNHS 2012). METHODS: The Chinese urban children aged 6-11 years were selected according to gender, age and regional distribution using the multi-stage stratified cluster random sampling method, as well as the corresponding whole blood samples. The blood cadmium concentration was carefully determined by the quadrupole inductively coupled plasma mass spectrometry(ICP-MS) and the percentage of blood cadmium over 2 µg/L was subsequently estimated. In addition, the upper limit values of the 95%CI of the 95th percentiles of available blood cadmium data was assessed as the threshold of cadmium exposure. RESULTS: Totally, 2182 Chinese urban children were included, and of these, 1036 children were from the CNHS 2002 and 1146 children were from the CNHS 2012. From the CNHS 2002 to the CNHS 2012, the median blood cadmium concentration was increased from 0.28 µg/L to 0.95 µg/L, and the percentage of blood cadmium with over 2 µg/L was elevated from 1.45% to 10.47%. In addition, the new estimated threshold of blood cadmium was ascended from 1.24 µg/L up to 2.89 µg/L. CONCLUSION: The risk of cadmium exposure in Chinese urban children aged 6-11 years was increasingly aggravated from the CHNS 2002 to the CNHS 2012.


Assuntos
Cádmio , Exposição Ambiental , Criança , Humanos , Cádmio/sangue , China , População do Leste Asiático
2.
Environ Int ; 186: 108656, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621321

RESUMO

Cadmium (Cd) is an accumulative toxic metal which poses a serious threat to human health, even in trace amounts. One of the most important steps in the pathophysiology of lung cancer (LC) is the epithelial-mesenchymal transition (EMT). In this investigation, a cell malignant transformation model was established by exposing human bronchial epithelial cells (16HBE) to a low dose of Cd for 30 weeks, after which a highly expressed circular RNA (circ_000999) was identified. Cd-induced EMT was clearly observed in rat lungs and 16HBE cells, which was further enhanced following circ_000999-overexpression. Furthermore, upregulated EIF4A3 interacted with the parental gene AGTPBP1 to promote high expression of circ_000999. Subsequent experiments confirmed that circ_000999 could regulate the EMT process by competitively binding miR-205-5p and inhibiting its activity, consequently upregulating expression of zinc finger E-box binding protein 1 (ZEB1). Importantly, the circ_000999 expression level in LC tissues was significantly increased, exhibiting a strong correlation with EMT indicators. Overall, these findings provide a new objective and research direction for reversing lung EMT and subsequent treatment and prevention of LC.

3.
Environ Technol ; : 1-11, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623611

RESUMO

Tobacco (Nicotiana tabacum L.) shows promise for remediating Cd-contaminated soil due to its significant Cd accumulation capabilities. Although various tobacco varieties exhibit distinct Cd bioaccumulation capacities, a comprehensive understanding of the underlying mechanisms is lacking. This study, conducted using hydroponics, explores differences in Cd accumulation and tolerance mechanisms between two tobacco varieties, Basma and Yunyan 87. The results showed that Cd stress reduced the dry weight, tolerance index, and root morphology for both varieties. Basma exhibited a relatively smaller decline in these indices compared to Yunyan 87. Moreover, Basma demonstrated a higher Cd bioconcentration factor (BCF), concentration, and accumulated content, signifying its superior tolerance and bioaccumulation capacity to Cd compared to Yunyan 87. The Carbonyl Cyanide3-ChloroPhenylhydrazone (CCCP) addition resulted in reduced Cd accumulation and BCFs in both tobacco species. This effect was more pronounced in Basma, suggesting that Basma relies more on an active transport process than Yunyan 87. This could potentially explain its enhanced bioaccumulation ability. Subcellular Cd distribution analysis revealed Basma's preference for distributing Cd in soluble fractions, while Yunyan 87 favoured the cell wall fractions. Transmission electron microscope showed that Basma's organelles were less damaged than Yunyan 87's under Cd stress, possibly contributing to the superior tolerance of Basma. Therefore, these results provided a theoretical foundation for development of Cd-contaminated soil tobacco remediation technology.

4.
Int J Phytoremediation ; : 1-18, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623998

RESUMO

Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.


The use of nitric acid-modified corn silk has been reported to enhance its adsorption performance over the unmodified cob for pollutants such as cadmium ions and malachite green. Although there may be no recorded data on the adsorption efficiency of acid-treated corn silk for selected pollutants, it can be considered as a prospective bio-sorbent owing to its chemical composition and functional groups for exchange of hydrogen ions for other cations.

5.
Iran J Basic Med Sci ; 27(5): 588-595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629100

RESUMO

Objectives: Investigating the impact of cadmium (Cd) on annulus fibrosus (AF) cells and its potential mechanism was the purpose of the current study. Materials and Methods: Cd was cultivated in different concentrations (0, 1, 5, 10, and 20 µM) on AF cells and the potential effects of the metal were assessed. Using the CCK-8 method, cell viability and proliferation were identified. Using transcriptome analysis, the annulus fibrosus cells were sequenced both with and without cadmium chloride. The EdU method was used to determine the rate of cell proliferation; senescence-associated ß-galactosidase (SA-ß-Gal) staining was used to determine the number of positive cells; and western blot, RT-PCR, and immunofluorescence were used to determine the protein and mRNA expression of senescence-associated proteins (p16, p21, and p53) and c-Jun N-terminal kinase (JNK). Results: According to the findings, Cd has the ability to increase the production of senescence-associated genes (p16 and p21) and senescence-associated secreted phenotype (SASP), which includes IL-1ß and IL-6. Through the JNK/p53 signal pathway, Cd exposure simultaneously accelerated AF cell senescence and promoted SASP. Following JNK inhibitor (SP600125) treatment, the expression of p53, JNK, and senescence-associated indices were all down-regulated. Conclusion: By activating the JNK/p53 signaling pathway, Cd can induce oxidative stress damage and AF cell senescence. These findings could provide a new approach for treating and preventing intervertebral disc degeneration (IVDD) caused by Cd exposure.

6.
Huan Jing Ke Xue ; 45(5): 3027-3036, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629563

RESUMO

Biochar and modified biochar have been widely used as remediation materials in heavy metal-contaminated agricultural soils. In order to explore economical and effective materials for the remediation of cadmium (Cd)-contaminated acidic purple soil, distillers 'grains were converted into distillers' grains biochar (DGBC) and modified using nano-titanium dioxide (Nano-TiO2) to produce two types of modified DGBCs:TiO2/DGBC and Fe-TiO2/DGBC. A rice pot experiment was used to investigate the effects of different biochar types and application rates (1%, 3%, and 5%) on soil properties, nutrient content, Cd bioavailability, Cd forms, rice growth, and Cd accumulation. The results showed that:① DGBC application significantly increased soil pH, cation exchange capacity (CEC), and nutrient content, with TiO2/DGBC and Fe-TiO2/DGBC exhibiting better effects. ② DGBC and modified DGBCs transformed Cd from soluble to insoluble forms, increasing residual Cd by 1.22% to 18.46% compared to that in the control. Cd bioavailability in soil decreased significantly, with available cadmium being reduced by 11.81% to 23.67% for DGBC, 7.64% to 43.85% for TiO2/DGBC, and 19.75% to 55.82% for Fe-TiO2/DGBC. ③ DGBC and modified DGBCs increased rice grain yield, with the highest yields observed at a 3% application rate:30.60 g·pot-1 for DGBC, 37.85 g·pot-1 for TiO2/DGBC, and 39.10 g·pot-1 for Fe-TiO2/DGBC, representing 1.13, 1.40, and 1.44 times the control yield, respectively. Cd content in rice was significantly reduced, with grain Cd content ranging from 0.24 to 0.30 mg·kg-1 for DGBC, 0.16 to 0.26 mg·kg-1 for TiO2/DGBC, and 0.14 to 0.24 mg·kg-1 for Fe-TiO2/DGBC. Notably, Cd content in rice grains fell below the food safety limit of 0.2 mg·kg-1 (GB2762-2022) at 5% for TiO2/DGBC and 3% and 5% for Fe-TiO2/DGBC. In conclusion, Nano-TiO2 modified DGBC effectively reduced the bioavailability of soil Cd through its own adsorption and influence on soil Cd forms distribution, thus reducing the absorption of Cd by rice and simultaneously promoting rice growth and improving rice yield. It is a type of Cd-contaminated soil remediation material with a potential application prospect. The results can provide scientific basis for farmland restoration and agricultural safety production of Cd-contaminated acidic purple soil.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química , Grão Comestível/química
7.
Int J Phytoremediation ; 26(6): 936-946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630443

RESUMO

Vegetable cultivation under sewage irrigation is a common practice mostly in developing countries due to a lack of freshwater. Long-term usage provokes heavy metals accumulation in soil and ultimately hinders the growth and physiology of crop plants and deteriorates the quality of food. A study was performed to investigate the role of brassinosteroid (BRs) and silicon (Si) on lettuce, spinach, and cabbage under lead (Pb) and cadmium (Cd) contaminated sewage water. The experiment comprises three treatments (control, BRs, and Si) applied under a completely randomized design (CRD) in a growth chamber. BRs and Si application resulted in the highest increase of growth, physiology, and antioxidant enzyme activities when applied under canal water followed by distilled water and sewage water. However, BRs and Si increased the above-determined attributes under the sewage water by reducing the Pb and Cd uptake as compared to the control. It's concluded that sewerage water adversely affected the growth and development of vegetables by increasing Pb and Cd, and foliar spray of Si and BRs could have great potential to mitigate the adverse effects of heavy metals and improve the growth. The long-term alleviating effect of BRs and Si will be evaluated in the field conditions at different ecological zones.


Assuntos
Verduras , Águas Residuárias , Brassinosteroides , Esgotos , Cádmio , Antioxidantes , Silício , Chumbo , Biodegradação Ambiental , Água
8.
Ecotoxicol Environ Saf ; 276: 116306, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631218

RESUMO

Cadmium, an environmental toxicant, severely impairs male reproductive functions and currently lacks effective clinical treatments. Mesenchymal stem cell-derived exosomes (MSC-Exos) are increasingly recognized as a potential alternative to whole-cell therapy for tissue injury and regeneration. This study aims to investigate the protective effects of MSC-Exos against cadmium toxicity on male reproduction. Our findings reveal that MSC-Exos treatment significantly promotes spermatogenesis, improves sperm quality, and reduces germ cell apoptosis in cadmium-exposed mice. Mechanistically, MSC-Exos dramatically mitigate cadmium-induced cell apoptosis in a spermatogonia cell line (GC-1 spg) in vitro by reducing DNA damage and promoting autophagic flux. These results suggest that MSC-Exos have a protective effect on cadmium-induced germ cell apoptosis by ameliorating DNA damage and autophagy flux, demonstrating the therapeutic potential of MSC-Exos for cadmium toxicity on male reproduction.

9.
Cell Signal ; 119: 111170, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604344

RESUMO

Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.

10.
Front Plant Sci ; 15: 1355849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606075

RESUMO

Superoxide dismutase (SOD) protects plants from abiotic stress-induced reactive oxygen species (ROS) damage. Here, the effects of cadmium (Cd) exposure on ROS accumulation and SOD isozymes, as well as the identification of significant SOD isozyme genes, were investigated under different Cd stress treatments to Zhe-Maidong (Ophiopogon japonicus). The exposure to Cd stress resulted in a notable elevation in the SOD activity in roots. Cu/ZnSODa and Cu/ZnSODb were the most critical SOD isozymes in response to Cd stress, as indicated by the detection results for SOD isozymes. A total of 22 OjSOD genes were identified and classified into three subgroups, including 10 OjCu/ZnSODs, 6 OjMnSODs, and 6 OjFeSODs, based on the analysis of conserved motif and phylogenetic tree. Cu/ZnSOD-15, Cu/ZnSOD-18, Cu/ZnSOD-20, and Cu/ZnSOD-22 were the main genes that control the increase in SOD activity under Cd stress, as revealed via quantitative PCR and transcriptome analysis. Additionally, under various heavy metal stress (Cu2+, Fe2+, Zn2+, Mn2+), Cu/ZnSOD-15, Cu/ZnSOD-18, and Cu/ZnSOD-22 gene expression were significantly upregulated, indicating that these three genes play a critical part in resisting heavy metal stress. The molecular docking experiments performed on the interaction between oxygen ion (O2•-) and OjSOD protein have revealed that the critical amino acid residues involved in the binding of Cu/ZnSOD-22 to the substrate were Pro135, Ile136, Ile140, and Arg144. Our findings provide a solid foundation for additional functional investigations on the OjSOD genes, as well as suggestions for improving genetic breeding and agricultural management strategies to increase Cd resistance in O. japonicus.

11.
Sci Total Environ ; : 172392, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608885

RESUMO

Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.

12.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607114

RESUMO

Cadmium sulfide (CdS)-based photocatalysts are prepared following a hydrothermal procedure (with CdCl2 and thiourea as precursors). The HydroThermal material annealed (CdS-HTa) is crystalline with a band gap of 2.31 eV. Photoelectrochemical investigation indicates a very reducing photo-potential of -0.9 V, which is very similar to that of commercial CdS. CdS-HTa, albeit having similar reducing properties, is more active than commercial CdS in the reductive dehalogenation of 2,2-dichloropropionic acid (dalapon) to propionic acid. Spectroscopic, electro-, and photoelectrochemical investigation show that photocatalytic properties of CdS are correlated to its electronic structure. The reductive dehalogenation of dalapon has a double significance: on one hand, it represents a demanding reductive process for a photocatalyst, and on the other hand, it has a peculiar interest in water treatment because dalapon can be considered a representative molecule of persistent organic pollutants and is one of the most important disinfection by products, whose removal from the water is the final obstacle to its complete reuse. HPLC-MS investigation points out that complete disappearance of dalapon passes through 2-monochloropropionic acid and leads to propionic acid as the final product. CdS-HTa requires very mild working conditions (room temperature, atmospheric pressure, natural pH), and it is stable and recyclable without significant loss of activity.

13.
Nanomaterials (Basel) ; 14(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607164

RESUMO

Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR and scanning electron microscopy. The electrode's enhanced surface area facilitated the signal amplification of the selected NSAIDs. The CdS-modified glassy carbon electrode (GCE) enhanced the electro-oxidation signals of naproxen to four times that of the bare GCE, while the ZnO-modified GCE led to a two-fold enhancement in the electro-oxidation signals of mobic. The oxidation of both NSAIDs occurred in a pH-dependent manner, suggesting the involvement of protons in their electron transfer reactions. The experimental conditions for the sensing of naproxen and mobic were optimized and, under optimized conditions, the modified electrode surface demonstrated the qualities of sensitivity and selectivity, and a fast responsiveness to the target NSAIDs.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38613761

RESUMO

Reducing the accumulation of cadmium (Cd) and mitigating its toxicity are pivotal strategies for addressing Cd pollution's threats to agriculture and human health. Hydrogen sulfide (H2S) serves as a signaling molecule, playing a crucial role in plant stress defense mechanisms. Nevertheless, a comprehensive assessment of the impact of exogenous H2S on plant growth, antioxidant properties, and gene expression under Cd stress remains lacking. In this meta-analysis, we synthesized 575 observations from 27 articles, revealing that exogenous H2S significantly alleviates Cd-induced growth inhibition in plants. Specifically, it enhances root length (by 8.71%), plant height (by 15.67%), fresh weight (by 15.15%), dry weight (by 22.54%), and chlorophyll content (by 27.99%) under Cd stress conditions. H2S boosts antioxidant enzyme activity, particularly catalase (CAT), by 39.51%, thereby reducing Cd-induced reactive oxygen species (ROS) accumulation. Moreover, it impedes Cd translocation from roots to shoots, resulting in a substantial 40.19% reduction in stem Cd content. Additionally, H2S influences gene expression in pathways associated with antioxidant enzymes, metal transport, heavy metal tolerance, H2S biosynthesis, and energy metabolism. However, the efficacy of exogenous H2S in alleviating Cd toxicity varies depending on factors such as plant species, concentration of the H2S donor sodium hydrosulfide (NaHS), application method, and cultivation techniques. Notably, NaHS concentrations exceeding 200 µM may adversely affect plants. Overall, our study underscores the role of exogenous H2S in mitigating Cd toxicity and elucidates its mechanism, providing insights for utilizing H2S to combat Cd pollution in agriculture.

15.
J Trace Elem Med Biol ; 84: 127445, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38613902

RESUMO

BACKGROUND: Cadmium (Cd) is a hazardous heavy metal that adversely affects the vital body organs particularly liver. Eriocitrin (ERCN) is a plant-based flavonoid that is well-known for its wide range of pharmacological potential. This research trial was aimed to determine the ameliorative potential of ERCN against Cd provoked hepatotoxicity in rats. METHODOLOGY: Twenty-four rats (Rattus norvegicus) were apportioned into control, Cd treated (5 mg/kg), Cd (5 mg/kg) + ERCN (25 mg/kg) and only ERCN (25 mg/kg) administrated group. Expressions of Nrf2/Keap1 pathway and apoptotic markers were assessed through qRT-PCR. The levels of inflammatory and liver function markers were evaluated by using standard ELISA kits. KEY FINDINGS: Cd exposure reduced the expression of Nrf2 and anti-oxidant genes as well as the activity of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione (GSH) contents while escalating the expression of Keap1. Furthermore, Cd intoxication augmented malondialdehyde (MDA) and reactive oxygen species (ROS) levels in hepatic tissues. Exposure to Cd resulted in a notable elevation in the levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST). Cd administration upregulated nuclear factor-kappa B (NF-κB), interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels as well as cyclooxygenase-2 (COX-2) activity. Furthermore, Cd administration upsurged Bax and Caspase-3 expression while reducing the expression of Bcl-2. Moreover, Cd intoxication disrupted the normal architecture of hepatic tissues. However, supplementation of ERCN significantly (p < 0.05) ameliorated the aforementioned disruptions induced by Cd intoxication. CONCLUSION: ERCN treatment remarkably ameliorated the hepatic tissues owing to its antioxidant, anti-inflammatory, and anti-apoptotic potentials. These findings underscore the therapeutic potential of ERCN to counteract the adverse effects of environmental pollutants on hepatic tissues.

16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612636

RESUMO

Cadmium (Cd) is one of the most dangerous environmental pollutants. Its mechanism of action is multidirectional; among other things, it disrupts the balance of key essential elements. The aim of this study was to assess how cumulative exposure to Cd influences its interaction with selected essential elements (Cu, Zn, Ca, and Mg) in the kidney and liver during long-term observation (90 and 180 days) after subchronic exposure of rats (90 days) to Cd at common environmental (0.09 and 0.9 mg Cd/kg b.w.) and higher (1.8 and 4.5 mg Cd/kg b.w.) doses. Cd and essential elements were analyzed using the F-AAS and GF-AAS techniques. It was shown that the highest bioaccumulation of Cd in the kidney occurred six months after the end of exposure, and importantly, the highest accumulation was found after the lowest Cd dose (i.e., environmental exposure). Organ bioaccumulation of Cd (>21 µgCd/g w.w. in the kidney and >6 µgCd/g w.w. in the liver) was accompanied by changes in the other studied essential elements, particularly Cu in both the kidney and liver and Zn in the liver; these persisted for as long as six months after the end of the exposure. The results suggest that the critical concentration in human kidneys (40 µgCd/g w.w.), currently considered safe, may be too high and should be reviewed, as the observed long-term imbalance of Cu/Zn in the kidneys may lead to renal dysfunction.


Assuntos
Cádmio , Fígado , Humanos , Animais , Ratos , Cádmio/toxicidade , Seguimentos , Rim , Metais , Homeostase
17.
Environ Pollut ; : 123969, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615835

RESUMO

The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400°C (RB400) and 700°C (RB700) to produce biochar. Adsorption and soil incubation experiments were carried out to assess the feasibility of using rape straw derived biochar pyrolyze at different temperatures and understanding their remediation mechanisms in alkaline environments. The sorption capacity for Cd immobilization was evaluated using sorption isotherms, revealing that RB700 exhibited enhanced Cd sorption performance with a maximum sorption capacity of 119.33 mg g-1 calculated from the Langmuir isotherm equation at pH 8. Cd L3-edge X-ray sorption near-edge structure (XANES) spectroscopy analysis confirmed that the dominant sorption species of Cd were organic Cd in RB400, with CdCO3 precipitation increased to 73.9% in RB700. Solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy demonstrated that aromatic and carboxyl C functional groups are involved in the organic sorption of Cd through complexation and Cd2+-π interactions in alkaline solutions. The precipitation of CdCO3 in RB700 may resulted in a more effective passivation effect compared to RB400, leading to a significant 15.54% reduction in the DTPA-Cd content in Cd-contaminated soil. These findings highlight the effective Cd passivation Cd in alkaline environments by rape straw derived biochar, providing new molecular insights into the Cd retention mechanism of biochar. Furthermore, it presents novel ideas for improving remediation approaches for alkaline Cd-contaminated soils.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38616549

RESUMO

This study, investigated the concentrations of cadmium, lead and arsenic in vegetables grown with irrigation and sold in Sabon gari and Samaru markets in Zaria, Nigeria. Cadmium was absent in amaranthus, pepper and tomatoes purchased from Samaru market. Nevertheless, amaranthus and lettuce had higher concentrations of these toxic metals than pepper. Total arsenic concentrations in the investigated vegetables were higher than the maximum levels set by the World Health Organization. Total daily intake of the metals was higher than the maximum levels for consuming vegetables from these markets. Therefore, individuals who consume these foods may be at risk. These results indicate the possibility of toxic metal contamination in vegetables purchased from Zaria markets.

19.
J Hazard Mater ; 470: 134305, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38626677

RESUMO

Phosphorus-solubilizing bacteria (PSB) assisted phytoremediation of cadmium (Cd) pollution is an effective method, but the mechanism of PSB-enhanced in-situ remediation of Cd contaminated sediment by submerged plants is still rare. In this study, PSB (Leclercia adecarboxylata L1-5) was inoculated in the rhizosphere of Potamogeton crispus L. (P. crispus) to explore the effect of PSB on phytoremediation. The results showed that the inoculation of PSB effectively improved the Cd extraction by P. crispus under different Cd pollution and the Cd content in the aboveground and underground parts of P. crispus all increased. The µ-XRF images showed that most of the Cd was enriched in the roots of P. crispus. PSB especially showed positive effects on root development and chlorophyll synthesis. The root length of P. crispus increased by 51.7 %, 80.5 % and 74.2 % under different Cd pollution, and the Ca/Cb increased by 38.9 %, 15.2 % and 8.6 %, respectively. Furthermore, PSB enhanced the tolerance of P. crispus to Cd. The contents of soluble protein, MDA and H2O2 in 5 mg·kg-1 and 7 mg·kg-1 Cd content groups were decreased and the activities of antioxidant enzymes were increased after adding PSB. The results showed that the application of PSB was beneficial to the in-situ remediation of submerged plants.

20.
J Hazard Mater ; 470: 134228, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38626683

RESUMO

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...